Table of Contents

DAY= Lo (o T Y 1 o To] o PP PP PP PPPRPPP PP
Chapter 1. INSAllING PYTNON ...t e e e e e e e e et e e e s e s b e e e e e e e e e e nnnnnreeeeeeen)
1.1. WhIiChPYIhONIS FIGNTTOT YOU?. ...ttt e e e e s e e e e e e e e e eeeeeas 2
1.2 PYINONON WINAOWS. ...ttt e ettt e e et e e et e e e e e e e s s b et e e e e e e e e e e s be e e e e e e e e e s e nnnnnreeeaeeas :
1.3 PYINONONIMAC OS Xttt ettt ettt e e e e ettt e e e e e e R e et e e e e e e e e et e e e e e e e R e e e e e e e e annrnes K
1.4, PYINONONIMAC OS ...ttt e e e e e ettt e e e e e e e et e et e e e e e e e e e e e e e e e b n e e e e e e e aanne !
1.5. PYthoNON REAHEAILINUX. ...ttt ettt e e e e s e et e e e e e e e e e e e e e e e annbrn e e e e e e e e e annes 5
1.6.PYthonon DEDIANGNUILINUX........uutiiieiie ettt et e e e e s e e e e e e e e et e e e e e e e e annnnnneeeeeas 6
1.7.PythonInstallationfrom SOUICE...........uuiiiiiieei et e e e e e e e e e e e e s ennnreees 6
1.8. TREINTEIACVESKEIL ..ot e et et e e e e e e e e e e e e e s e sbbrnr e e e e e e e aannns !
R T U 4 10 =TSR
Chapter 2. YOUur First PYthON PrOQIaM..........o oottt e e e e e e e e e e s s b e e e e e e e e e aaes 9
200 R I 11/ 1o T [] o SRR
A B = Tol b T 0 To e g Tox 1 o] o OO PPRPPPRPPPI (
2.3. DOCUMENTINGEUNCHIONS. ...ttt eee ettt e e e e e e e e e e e e s et e et e e e e e e e nn bbb et e e e e e e e nnbbnneeeeeeenaannns 1C
2.4, EVErythingS @nODJECT.uiiieiiiie ettt e 11
RS [06 (=T 0111 0 To @ o [T PR P PP PP PPPPPRRPPPRN 1
2.6. TESUNGVIOAUIES.........eeeiieeeeeee ettt ettt e e e e e e et e e e e e e s R e et e e e e e e s s s bb e s e e e e e e e e e e nnnrrneeeeens 1
Chapter 3. NaliVE DAATYPES. ..o ee e ettt e e e e e o et e e e e s s e e s e e et e e e e e e s R b e e e et e e e e e s e nsbrsee e e e e e e e aannnnnnneeeas 1
I I [[(oo [0l g Te B (et i[o] 0 F= T =T PP PRSP 15
I [11 {00 [[T o IR] TSP PPPPPPPPPPPPN 1
3.3, INTrOAUCINGTUPIES. ...ttt e e e e et e et e e e e e et e e e e e e e e e e b ee e e e e e e e e e e nnnnn e e e aeeas 2
3.4, DECIarNG/ariabIES ..o e e e e e e e e e e a e 2!
S o] 1 4 F= 1L a0 S]] a0 E T TP P PP TPPPPPPR 2!
I G 1Y F=T o] o] g o I) £ PP P PP PPPPPPR 2
3.7. J0ININQLIStS aNASPIITHING STINQS. ... ee e ittt e e e e s s r e e e e e e e s r e e e eeeeaans 28
GG TS TH] 1] 0 1= Y TR z
Chapter 4. TREPOWET Of INtrOSPECTION........eeiiiiieeiiiiiitie it e e ettt e s s nb b e e e e e e e s e aannnnnneeaeeeens 31
I 11V 0 To | o TP PP PP PP PPPPRPPPRPPP K
4.2. UsingOptionalandNaMEOATGUIMENTS.cuiiiiiiiiiriiiiee e e et e e e e e s s e e e e e e s e r e e e e e e s sasbbrnreeeaeeaaanns 32
4.3. Usingtype, str, dir, andOtherBuUilt—IN FUNCLONS............oviiiiiiiiiiiiiiiiieeeeeeeee e 33
4.4, GettingObjeCtReferenCeFVItN GELAL............oi i e e e e 36
T 11 =T g1 0o | B] TP PP PP PPRRPPPPPPN 3
4.6. ThePeculiamNatureof AaNAANTON.............oiiiiiiiiie e e e e e e e e e e e e e e rreeeeas 39
4.7, USINGIaMBABFUNCLIONS........eiiiiiieiiiit et e e e e e e et e e e e e e b e et e e e e e e s nr s e e e e e e e e e annnees 41
4.8. PULLINGIT All TOGEINEL.ot e e et e e e e e e r et e e e e e e s b e e e e e e e e e e e nnneees 4:
E e TS0 0] 4 T= Y/ PP :
Chapter 5. Objectsand ODJECT—OTENTALION.uriiiiiiiiiiieee e e e e s s r e e e e e s s b e e e e e e e e s eannnnees 47
ST I B 1Y/ o | o PP PP P PP PPPRPP PPN £
5.2. ImportingModulesUsingfrom mMOdUIEIMPOIL............uuiiiiiieei e 49
5.3, DEIININGCIASSES. ...t eeeeeeeiiei ettt e e e e e et e e e e e e e e et e e e e e e e bbb e e e e e e e s e a b rnnr e e e e e e e aanne 5
5.4, INSTANTIALINGTIASSES. ...ttt e e et e et e e e e e e e ettt e e e e e e s b e e e et e e e e e e e e e e e e e e e e nnnnees X
5.5. EXPIOrinQUSErDICt A WIaPPEICIASS.uuveeeiieiiiiiiititii e e e ettt e e e e s e e e e e e e e e e e e e s s anbbrnreeeeeeeans 54
5.6. SPECIALCIASSMEINOUS.......eeieiieiiie et eas 5¢
5.7. AdvanceBPecCialClasSMEtNOUScuuii et e e e e e e e e 59

Dive Into Python [

Table of Contents

Chapter 5. Objectsand Object—Orientation

5.8. INtrodUCINGCIASSATIIIDULES.ceieeeii ittt e e e e r et e e e e s e r e e e e e e e e brn e e e e e e e e aannes 60
5.9, PrIVAIEFUNCHIONS ...ttt eeeeeee ettt e e e ettt e e e e e ekt ee e e e e s e s bbb e et e e e e e e o e R e e e et e e e e e e nn b e e e e e e e e e e e nnnnnes 6.
LR O T YU 0] 0 F= VPP TPTTTTTTTRTPRTRTN €
Chapter 6. Exceptionsand File HANAING..........oiii e e e e e e e e s e e e eeeas 64
6.1, HANAINGEXCEPUONS.eeeeeeeeei ittt e ettt e e e e e e e et e e e e e e e et e e e e e e s e nn e e e e e e e e e e e ansnnnneeeaeas 64
6.2. WOrKingWith File ODJECTES.......coiiiiiiieee ettt e e e e e e e e e e e e s 66
6.3. [TEratiNQWItN TOI LOOPS. ... ittt ettt e e e e e et e e e e e e s e et e e e e e e e nnbbnn e e e e e e e aannnn 7C
6.4, USINGSYSIMOUUIESceeeiiiieeii ittt e ettt e e e e s st et e e e e e s bR e e e e e e e e e e b ne e e e e e e e e s e nnnnnneneaeeas 7.
6.5. WOIKINGWILN DIFECIOMES. eeeeeeeee e ettt ettt e e e e e s s et e e e e e e bbb e e e e e e e s e nnbr e e e e e e e e e aanns 74
6.6. PULLINGIL All TOGEINEL. ...ttt e e e e e e e e e e e e s s e e et e e e e e s e nnnnrreeaeas 71
LTS YH |1 0] 0 T= T Y TR 1
Chapter 7. REQUIAIEXDPIESSIONS. uttiiiieeeei ittt e e e e ettt e e e e e s e e e e e e e e s e e et et e e e e e e s s b e s e e et e e e e e e s nnn e e e e e e e e e nannnnrnees 8]
4% T B 1Y/ o | o OO PP PP PPPRTPP PPN €
7.2. CaSEStUAY: SIrEEIAUUINESSES.t e ettt ettt e e e e e et e e e e e s e e e et e e e e e s b e e e e e e e e e nnnrrneees 81
7.3. CaseStudy:ROMANNUMETAISccoiiiiiiiiiei et e e e e e e e s e et e e e e e s e r e e e e e e e s sannbrnreeeeeeeaaanns 83
7.4, USINGNE{N, M} SYNTBX ...ttt e e e e e e e s e e e e e e e e e s bbb e et e e e e e e e nbrnneeeeeeeaaannns 85
7.5. VerDOSEAREQUIAIEXPIESSIONS.......eeiiiiiiiiiittieiee e e e sttt e e e e e e e e et e e e e s e e e e e e e e s s s b b e e e e e e e e s e anbbnnneeeeeeaaans 88
7.6. Casestudy:ParsingPRONENUMDEISo e e e e e e eeeeeeaan 89
A S 101111 0 1= 1Y TR ¢
Chapter 8. HTIML PrOCESSING. ... ttiieiiiittitiitteeee e ettt e e e e e s et e e e e e s e s et e e e e e s s e s s b e e e e et e e e e aa s b b e et e e e e e e s asnbnnneeeeeesaanes 9
S I B 1Y/ o | o OO PP P TP PRPRTTP PPN C
8.2, INtrOAUCINGEGMIIID. DYttt e e e e e e e e e e e e e b e e e e e e e e e e eaeas 9¢
8.3. Extractingdataffom HTML dOCUMENTS..........uuiiiiiiieiiiiiiie ittt e e a e e e 100
8.4. INtroduCiNGBASEH T TIMLPIOCESSOI Y. .. .ceeeeiiiiittee et e e e e e ettt e e e e e e e e e e e e e et r e e e e e e e e e s e e e e e e e e e e nnnees 102
8.5.10CAISANAGIODAIS.......coii it e e e e e e e e e e 10.
8.6. Dictionary—basedtringformatting...........ccouiiiiiiiiiie e 107
8.7. QUOLINGALIIDULEVAIUES ...ttt e e e e e e e e e e e e e e nr e e e e e e e naan 10€
(RS I (a1 foo (8Tl qTe o =1 =Tot B o) VPP R P PR PPPPPPPPRPRRN 10¢
8.9. PULLINGT @l TOGETNE ...ttt e e e e e e e e s e e e e e e e e s e e e e e e e e e annrrnees 11’
8. L0, SUIMIMIBLY. .. oot et e e e oo et oot e e E R E R e st R R e R Rt e e s s s e e s s e e s e e e e e e e e e e e e e e e e e e 11
Chapter 9. XIML PrOCESSING. ... cteeeiiiuittteiieee e et ittt e e e e e s e et e e e e e s s s e e e e e e e e s e s b b e e e e et e e e e s e s b bs e e et e e e e e s s nnbnneeeeeeeennnnnnes 11
S I B AV o | o OO PP PPPPPPPPRTTPN 1]
S e T (=T [T TP P PP PPPPPPPERPPN 1c
SR B - 16511 0o 1| OO PPPPPPPPRPPPP 12
S U [T Lo [T PP PP P TP PPPPPP 1-
9.5. SEArChINGOr EIEMENTS.......eiiiii it e e e e e e e s e nnnrneees 12¢
9.6. ACCESSINEIEMENALIIDULES.cii i e e e e e e e e e e e e e 131
LS T 1 R 1
Chapter 10. SCHPISANG SIIEAMIS........eeiieeiiiiitit et e e et e e e e s et e e e e e e s s e e et e e e e e e s s e e e e e et e e e e s s ansbnsreeeeee s e e nnnnrneeeeeas 13:
10.1. ADSIIACHNANPULSOUITESeeeiiiiiiiteeee e e e e e ettt e e e e s e e et e e e e e e e s et e e e e e e s s s s b ee e et e e e e e e e nsnnb e e e e e eeeeannnnnnnes 133
10.2. StandartPut, OULPUL,ANOEITORuuuueeueeeueeeteeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeereeerereeeees 136
10.3. CaChin@IOUEIOOKUPSttt e e e e e e et e e e e e s e e e e e e e e e s s b n e e e e e e e e aannns 14C
10.4. FindingdireCtChildrenof @NOTE...........uuiiiiieiiiiee e e e e e s e e e e e e anes 141
10.5. Creatingeparatdandlerddy NOUELYPEuu it e e e e 141

Dive Into Python ii

Table of Contents

Chapter 10. Scriptsand Streams

10.6. Handlingcommand—liNGIrQUIMENTS...........uuiiiiiiieeiiiii et e e e e e e e e e e e e e e e s annneeeeeas 143
10.7. PULtINGE @l TOGETNE ...ttt e e e e e s e et e e e e e e r e e e e e e s e ennnnnees 14¢
B0 S T TU g 0 =T o PP 1/
Chapter 11. HTTP WED SEIVICES.......oii ittt e e e e e e e e e e e e e e s s e e e e e e e e s nrneeeeeas 14¢
0 T 5 T 14
11.2. HOWNOttO fetChdataOVeIr HT TR, .. . ittt e e a e e e e e e e e e e e e e e annes 151
I T LU (=T o N I TP PP PEPPP R PPPPPPPPRPPPN 15:
11.4. DebUGQINGHT TP WED SEIVICESuuiiiiiieeiiiiitee ettt e e e e e e e e r e e e e e e s e b e e e e e e e e e e annnees 153
11.5. SEtlNGNEUSEITAGENL. ...ttt e e e e e e e e e e e e e e s b e e e e e e e e e e s b e e e e e e e e e e e e e reaeeas 155
11.6. Handlind-ast—MOdIifI@AANAETAG. ceeeeeiiiiiiiiiii e e e e e e r e e e e e e aaanes 156
N o oo Lo | o g =To] €T ot ST OO PP PRPPPP PPN 15¢
11.8. HaNdliNGEOMPIESSEAALALcceeiiiiiirtiiiie e ettt e e e e e et e e e e e e s r e e e e e e s e e e e e e e e e s aanbnnneeeeeeeaannes 163
11.9. PULtINGE @l TOGETNEI ...t r e e e e e e e e et e e e e e e b e e e e e e e e e nnnneees 16¢
B O YU 0 = o P TTTTTTPTRRPPRTTNE 16
Chapter 12. SOAPWWED SEIVICES......ceiiieiiiiititiee ettt e et e e e e e s e et e e e e e e s e et e e e e e s s s sbne e e e e e e e s e e nnnneneeeeens 16¢
D B I 1Y/ T 1 [PP PP P TP PPPPPPPRRPPP 1€
12.2. InStalliNGNE SOAPLIDIAIIES.ceieiiiee e e e e s 169
12.3. FirSISIEPSIWITN SOAP.....ceeeeeeee ettt e e e e e e et e e e e e e s e e et e e e e e e e b e e e e e e e e e e nnnnnes 171
12.4. DebugginGOAPWED SEIVICESttt e e e e e e e e e r e e e e e e anes 172
12.5. INTFOAUCINGNSDL. ...ttt e e e e e et e e e e e e s e e e et e e e e e e e bnen e e e e e e e e e annnnnn s 17:
12.6. Introspectin®OAPWED Servicesnith WSDL..........ooiiiiiiiiiiieiiee e 174
12.7. SEAICNINEEOOPIE.......coi ittt e e e oo e e e e e e e s e et e e e e e s e bbb e e e e e e e s e b rrnreeeeeeaas 17¢
12.8. TroubleshootiNGOAPWED SEIVICES...........uiiiiiiiieiee e 179
2 U0 0 =T o PSPPI 1€
(O aF= T (=T g R 0 L o 11 B =T o o F TP PR TP PPPPPRRPIN 18
13.1. Introductiorto ROMANNUMETAIS..........uiiiiiiiiiiiee et e e e e e e e e e e r e e e e e e e anes 183
R B B 1Y/ T 1| TP PP PRPTP P PPPPPPPRRPPP 1€
13.3. INtrOAUCINGOMANTEST. Y.+ttt eeeeeeiet ettt e e e e ettt e e e e s e e e e e e e e e e e et e e e e e e ann b e e e et e e e e e annn b b e e e e e e e e e e annnneees 184
R S TS (] [0 [0 GRS [0 TS TP PP PPEPPR PP 18
13,5, TESHUNGON TAIUIE......ce ittt e ettt e e e e e e et e e e e e s e b e e e e e e e e e e e snnr e e e e e e e e e e nnnnenes 18
R ST =TS (] o (0T 0T] TP TP PEPPP R PPPPPPPRRPPPN 19(
Chapter 14. TeSt—FirStPrOGIaMMING.........cuiiieeiiiiiieie e ettt e e e s s e e e e e e s s s e et e e e e e s e nb e e e eeeeeesaannbrnnneeeeesaanns 193
L4, L rOMIAN. PY SEAGEL ... iR R R R R s e s e e e R n e s s e e s e e e e n e e s nnnnnnen e e 19:
14.2.TOM@N.PY SEAGEZ. ... s s R R e R R R R R R R R e R s e e s R e s s e e s e e e s n e e s nnnnnnnn e e 19¢
14, 3. TOMIAN. PY SEAGES ..o E R R R R R R R R R R e R R e e s R e e s s e e s e e e s n e e s nnnnnnnn e e 19¢
I (o g T T 0} V] r= T [PP P TP PP P PP PPPPPPPPPPPPI 20:
14, 5. TOMAN. PY SEAGED. ..o E R R R R R n e e e R s s n e s s e e s s e e e n e e s e nnnnnn e e e 20¢
(04 gF= T (=T g ST =] = T (0] £ o [PPSO PPRTPPP PP 20
ST I o FoT g (o | 1o o] 0o L= PP PP PPPPPPPPPPI 20
15.2. HandlingChangingreQUITEIMENTSuuiiiiiie ettt e e e et e e e e e s e e e e e e e e s e e e e e e e s s annbrnneeeaeeeaannes 210
ST T (] = 1o (o] 1 o o [T TP PO PT PP PPPPPPPPPPPPN 21
TR o L] KT 1 o) TP PTPP P PPPPPPPRRPPP 21
BRI STTU T 10 1 =T o PP 27

Dive Into Python iii

Table of Contents

Chapter 16. FUNCHONAIPIOGIaMIMING .. . eiiiiiiiiiiiiiiie ettt e s e e e e e e s s e e e e e e e e e s s rr e e e e e e e e s annbrnneeeeeesaaannes 223
T I 1Y/ T 1| TP P PP TPP P PPPPPPPPRPPP 22
16.2. FINAINGNEPALN. ...t e oo e et e e e e e s e e e e e e e e e b e e e e e e e e e nnnneees 22
16.3. FilteriNglISTS FEVISITEA. ieeieeieee ettt e e e e e e r e e e e e e s e e e e e e e e e e s s snbnn e e e e e e e e e annns 22¢
16.4. MaPPINGISIS FEVISIEEML.......eeeeeeeeiiiiiit it e ettt e et e e e e e e et e e e e e e b e et e e e e e e e e e e e e e e e s nnnnees 228
16.5. Data—CentriPrOGraMIMING.cooiuuureeeeeeeeesaatttree et e eeeaaaser e e e e e e s s sas s aeereeeeeesaassseeeeeaeeeaaannnnrreeeaeeesaannnnnes 229
16.6. DynamicallimportingMOUUIES..........oooeiiiieiie et e s e e e e s eeeeeas 230
16.7. PULINGE @l TOGETNEI ...t e et e e e e e e r et e e e e e e r e e e e e e e e ennnnnees 23]
GRS T T U0 10 =T o PP 23
Chapter 17. DYNAMUCTUNCIIONS.......ceiiiiiiiii it e ettt e e e e e e e et e e e e e et e e e e e e e s s bber e e e e e e e s aannbnnneeeeeeeaannes 23t
0 T 1Y/ T 1| TSP PTP P PPPPPPPRRPPP 2
N o181 = I o) V] c= T = AT PP P PPPPPPRRI 23!
ORI o] 10T = o) V2] £= T = PP PP PP PR PPPPPPRR 23
R o181 = I o) V2] £= T = C TSP P PP PPPPPPRRI 23
RN o] 10T = I o) V] r= T = TP OP PP P PPPPPPRR 241
O o] 0T = I o) V] £= T = TP OEPP PP PPPPPPRRI 24
O o] 18T = o) V] £= T = PP PP PP PPPPPPRRP 24,
S BT U0 0 =T o PP 24
Chapter 18. PerfOrMaNCETUNINGceeiiiiiittieee e e e e sttt e e e e e s e e e e e e s s s s e e e et e e e e e e s s R s b e et e e e e e e aaannbe e e e e e eeeaaannnrnreeeeeeas 247
R 20 I 1Y/ 5T 1| TP PP PP PPPPPPPRRPPP 2/
18.2. USINGNETIMEIT MOTUIR......eeieiee ettt e e e e s e e e e e e e e e e e e e e e e e nnnees 249
18.3. OptiMIZINGREGUIAIEXPIESSIONS........ieiiiiiieeeee ettt e e et e e e e e e e e e e e e e s e e e e e e e s e s nnbrneeeeeeeeaanes 250
18.4. OptimiZINGDICHONAIY LOOKUPDS.ceeeiiiiiitiie ittt e e e e e e e r et e e e e e e e e e aeas 253
18.5. OptiMIZINGLIST OPEIALIONS ... iiitieeieee ettt e et e e e e e s e e e e e e s s e b e e e e e e e e s s nnnrrreeaeeesaannnnnes 256
18.6. OptimiziNgStHINGMaNIPUIRLIONL.coiiiiiieeii e e e e e e e s e e eeas 258
RS T U g 0 =T o PP 2€
APPENIX A, FUINET TEAUING. ... ettt ettt e oottt e e e e e e e et e e e e e e e n e e e et e e e e e s e snb b s e e e e e e e e e annnnnnneeeas 26
APPENIX B. A SmIMINULE FEVIEW.ceiiiiiiiiiie ettt ettt e e e e s e e e e e e e s e b e e et e e e e e e e snbe e e e e e e e e e e e nnbnnnreeeeenaans 26¢
APPENIX C. TIPS BN IFICKS ...ttt e e e e et e e e e e e e e e e e e e e e e e s b e et e e e e e s e annbbnneeeeeeenanns 28;
APPENTIX D. LISt OF @XAMPIES..... .ottt e e e et e e e e e e e e e e e e e s e bbb e e e e e e e e e e nnnnnneeeeas 28
APPENAIX E. REVISIONNISTONY. ... ettt ettt e e e et e e e e e e e et e e e e e s s s b e e et e e e e e e nn b e e e e e e e e e e annnnrnnees 30:
APPENdiX F. ADOUL tNE DOOK ...t e e e e e e e e e e e e e s b b e e e e e e e aanes 31
Appendix G. GNU Free DOCUMENTAtIONLICENSE.uuiiiiieiiiiiiiie et e e e e e e e e e e s r e e e e e s e e e e aeeas 315
(GO e (== 10] o = PP PP PP PPTPPPPRRRRP 3]
G.1. Applicability anddefiNITIONSeeiiiiei et e e e e e e e e e e e e e e e e e e 315
LT V=T 4 o T= 1 ol0] o)/ o [o TSP PPPPPPPPPPO 31
CRC I Oe]0) a1 oo UE=T o] 111y APPSO PP PPRPPR PP 31¢
(Y T o |1 {0= 14 (o] 4 1< TP PP PPP R PTPPPP 31
G.5. COMBDININGIOCUMENES.ciiiiiett ettt e e e e e e e et e e e e e e s b e e e e e e e e s e s be e e e e e e e e e s nnnnnneeeeeeens 31€
G.6. COlleCtiONSIf AOCUIMEINTSuiiiiiiieei ittt e et e e et e e e e s s e et e e e e e e sb b b e e e e e e e e s annbrnneeeeeenans 318
G.7. Aggregatiomwith INAEPENAEIMIVOTKS.uiiiiii et e e e s e e e e e e e e e eeas 318

Dive Into Python iv

Table of Contents

Appendix G. GNU Free DocumentationLicense

LTS T I = 0 1 =4[] o TP PPPP PSPPI 31
(e T =11 00T (o] o PP P PP TPPPPPPI 31
G.10. FUtur@eVisioNSOf thiS TICENSE.coi it e e e s e e e 319
G.11. Howto usethis Licensefor yoUr dOCUMENTScoiiiuuiiiiiieeee ettt e e e e 319
APPENIX H. PYtNON TICENSE. ... ettt e e e e et e e e e e e e e e e e e e e e e b e e e e e e e e e e e nneeeeas 32
H.A. HiStOry Of tNESOMWATE......cci i e e e e e e e e e s s ea s 32C
H.B. Termsandconditionsfor accessin@r otherwiseusingPython...............coiii e 320

Dive Into Python %

Dive Into Python

20 May 2004
Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim (mailto:mark@diveintopython.org)
This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the latest versio

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front—-Cover Texts, and no Back—Cover Texts. A copy of the license is included in
Appendix G, GNU Free Documentation License.

The example programs in this book are free software; you can redistribute and/or modify them under the terms of tt
Python license as published by the Python Software Foundation. A copy of the license is included in Appendix H,
Python license.

Dive Into Python 1

mailto:mark@diveintopython.org
http://diveintopython.org/

Chapter 1. Installing Python

Welcome to Python. Let's dive in. In this chapter, you'll install the version of Python that's right for you.

1.1. Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you're using an account on a hosted server, your ISP may have already installed Python. Most popular Linux
distributions come with Python in the default installation. Mac OS X 10.2 and later includes a command-line versior
of Python, although you'll probably want to install a version that includes a more Mac-like graphical interface.

Windows does not come with any version of Python, but don't despair! There are several ways to point—and—click
your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes Windows, Mac OS,
Mac OS X, and all varieties of free UNIX—compatible systems like Linux. There are also versions that run on Sun
Solaris, AS/400, Amiga, OS/2, BeOS, and a plethora of other platforms you've probably never even heard of.

What's more, Python programs written on one platform can, with a little care, run on any supported platform. For
instance, | regularly develop Python programs on Windows and later deploy them on Linux.

So back to the question that started this section, "Which Python is right for you?" The answer is whichever one runs
on the computer you already have.

1.2. Python on Windows
On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete version of Pythol
an IDE with a Python—aware code editor, plus some Windows extensions for Python that allow complete access to
Windows—specific services, APIs, and the Windows Registry.

ActivePython is freely downloadable, although it is not open source. It is the IDE | used to learn Python, and |
recommend you try it unless you have a specific reason not to. One such reason might be that ActiveState is gener
several months behind in updating their ActivePython installer when new version of Python are released. If you
absolutely need the latest version of Python and ActivePython is still a version behind as you read this, you'll want t
use the second option for installing Python on Windows.

The second option is the "official" Python installer, distributed by the people who develop Python itself. It is freely
downloadable and open source, and it is always current with the latest version of Python.

Procedure 1.1. Option 1: Installing ActivePython
Here is the procedure for installing ActivePython:
1. Download ActivePython from http://www.activestate.com/Products/ActivePython/.
2.If you are using Windows 95, Windows 98, or Windows ME, you will also need to download and install
Windows Installer 2.0
(http://download.microsoft.com/download/WindowslInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe)

before installing ActivePython.

Dive Into Python 2

http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe

3. Double—click the installer, ActivePython-2.2.2-224-win32-ix86.msi.

4. Step through the installer program.

5. If space is tight, you can do a custom installation and deselect the documentation, but | don't recommend th
unless you absolutely can't spare the 14MB.

6. After the installation is complete, close the installer and choose Start—>Programs—>ActiveState ActivePytho
2.2->PythonWin IDE. You'll see something like the following:

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994-2001 Mark Hammond (mhammond@skippinet.com.au) —
see 'Help/About PythonWin' for further copyright information.

>>>

Procedure 1.2. Option 2: Installing Python from Python.org (http://www.python.org/)

1. Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and selecting
the highest version number listed, then downloading the .exe installer.

2. Double—-click the installer, Python—2.xxx.yyy.exe. The name will depend on the version of Python
available when you read this.

3. Step through the installer program.

4. If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the test suite
(Lib/test/).

5. 1f you do not have administrative rights on your machine, you can select Advanced Options, then choose
Non-Admin Install. This just affects where Registry entries and Start menu shortcuts are created.

6. After the installation is complete, close the installer and select Start—>Programs—>Python 2.3—->IDLE (Pytha
GUI). You'll see something like the following:

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright”, "credits" or "license()" for more information.

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.

IDLE 1.0
>>>

1.3. Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command-line version of Python preinstalled. If you are comfortable with the
command line, you can use this version for the first third of the book. However, the preinstalled version does not co
with an XML parser, so when you get to the XML chapter, you'll need to install the full version.

Rather than using the preinstalled version, you'll probably want to install the latest version, which also comes with a
graphical interactive shell.

Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X
To use the preinstalled version of Python, follow these steps:
1. Open the /Applications folder.

Dive Into Python 3

http://www.python.org/
http://www.python.org/ftp/python/

2. Open the Utilities folder.
3. Double—click Terminal to open a terminal window and get to a command line.
4. Typepython at the command prompt.

Try it out:

Welcome to Darwin!

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp—precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Procedure 1.4. Installing the Latest Version of Python on Mac OS X
Follow these steps to download and install the latest version of Python:

1. Download the MacPython—-OSX disk image from http://homepages.cwi.nl/~jack/macpython/download.html.

2. If your browser has not already done so, double—click MacPython—-0OSX-2.3-1.dmg to mount the disk
image on your desktop.

3. Double—click the installer, MacPython—-OSX.pkg.

4. The installer will prompt you for your administrative username and password.

5. Step through the installer program.

6. After installation is complete, close the installer and open the /Applications folder.

7. Open the MacPython-2.3 folder

8. Double—click PythonIDE to launch Python.

The MacPython IDE should display a splash screen, then take you to the interactive shell. If the interactive shell do
not appear, select Window—>Python Interactive (Cmd-0). The opening window will look something like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

Note that once you install the latest version, the pre—installed version is still present. If you are running scripts from
the command line, you need to be aware which version of Python you are using.

Example 1.1. Two versions of Python

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp—precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you% /ustr/local/bin/python

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Dive Into Python 4

http://homepages.cwi.nl/~jack/macpython/download.html

1.4. Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choice.
Follow these steps to install Python on Mac OS 9:

1. Download the MacPython23full.bin file from
http://homepages.cwi.nl/~jack/macpython/download.html.

2. If your browser does not decompress the file automatically, double—click MacPython23full.bin to
decompress the file with Stuffit Expander.

3. Double—click the installer, MacPython23full.

4. Step through the installer program.

5. AFter installation is complete, close the installer and open the /Applications folder.

6. Open the MacPython-0S9 2.3 folder.

7. Double—click Python IDE to launch Python.

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the interactive she
does not appear, select Window—>Python Interactive (Cmd-0). You'll see a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

1.5. Python on RedHat Linux

Installing under UNIX-compatible operating systems such as Linux is easy if you're willing to install a binary
package. Pre—built binary packages are available for most popular Linux distributions. Or you can always compile
from source.

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest version
number listed, then selecting the rpms/ directory within that. Then download the RPM with the highest version
number. You can install it with the rpm command, as shown here:

Example 1.2. Installing on RedHat Linux 9

localhost:~$ su -

Password: [enter your root password]

[root@localhost root]# wget http://python.org/ftp/python/2.3/rpms/redhat—9/python2.3-2.3-5pydotorg.i386.rpm
Resolving python.org... done.

Connecting to python.org[194.109.137.226]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 7,495,111 [application/octet—stream]

[root@localhost root]# rpm —Uvh python2.3-2.3-5pydotorg.i386.rpm

Preparing... FHHHHHHHHHHHHH A [10090]
1:python2.3 T R [10090)
[root@localhost root]# python (1]

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# python2.3 (2]

Dive Into Python 5

http://homepages.cwi.nl/~jack/macpython/download.html
http://www.python.org/ftp/python/

Python 2.3 (#1, Sep 12 2003, 10:53:56)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-5)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# which python2.3 (3]
/usr/bin/python2.3

o Whoops! Just typingython gives you the older version of Python —— the one that was installed by
default. That's not the one you want.

@ At the time of this writing, the newest version is calpgthon2.3. You'll probably want to change the
path on the first line of the sample scripts to point to the newer version.

® Thisis the complete path of the newer version of Python that you just installed. Use this on the #! line
(the first line of each script) to ensure that scripts are running under the latest version of Python, and be
sure to typgython2.3 to get into the interactive shell.

1.6. Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su —
Password: [enter your root password]
localhost:~# apt—get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
python2.3
Suggested packages:
python-tk python2.3-doc
The following NEW packages will be installed:
python python2.3
0 upgraded, 2 newly installed, O to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1-1_i386.deb) ...
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1-1_all.deb) ...
Setting up python (2.3.1-1) ...
Setting up python2.3 (2.3.1-1) ...
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

1.7. Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/python,
Select the highest version number listed, download the .tgz file), and then do the confidure, make, make

Dive Into Python 6

http://www.python.org/ftp/python/

install dance.

Example 1.4. Installing from source

localhost:~$ su -

Password: [enter your root password]

localhost:~# wget http://www.python.org/ftp/python/2.3/Python-2.3.tgz
Resolving www.python.org... done.

Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 8,436,880 [application/x—tar]

localhost:~# tar xfz Python-2.3.tgz
localhost:~# cd Python-2.3
localhost:~/Python—2.3# ./configure
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for ——without-gcc... no

localhost:~/Python—2.3# make

gcc —pthread —c —fno-strict—aliasing -DNDEBUG —-g —0O3 —Wall —Wstrict—prototypes
=I. =I./Include -DPy_BUILD_CORE -0 Modules/python.o Modules/python.c

gcc —pthread —c —fno-strict—aliasing -DNDEBUG —g —0O3 -Wall —~Wstrict—prototypes
-I. =l./Include -DPy_BUILD_CORE -o Parser/acceler.o Parser/acceler.c

gcc —pthread —c —fno-strict-aliasing -DNDEBUG —g —0O3 -Wall —~Wstrict—prototypes
-I. =l./Include -DPy_BUILD_CORE -0 Parser/grammarl.o Parser/grammarl.c

localhost:~/Python-2.3# make install
Jusr/bin/install —c python /usr/local/bin/python2.3

localhost:~/Python—-2.3# exit

logout

localhost:~$ which python

/usr/local/bin/python

localhost:~$ python

Python 2.3.1 (#2, Sep 24 2003, 11:39:14)

[GCC 3.3.2 20030908 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
localhost:~$

1.8. The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?

It's like this: Python leads a double life. It's an interpreter for scripts that you can run from the command line or run
like applications, by double—clicking the scripts. But it's also an interactive shell that can evaluate arbitrary statemer
and expressions. This is extremely useful for debugging, quick hacking, and testing. | even know some people who

use the Python interactive shell in lieu of a calculator!

Launch the Python interactive shell in whatever way works on your platform, and let's dive in with the steps shown

here:

Example 1.5. First Steps in the Interactive Shell

>>>1+1 0

Dive Into Python

2

>>> print 'hello world' (2]
hello world

>>>x=1 (3]
>>>y =2

>>> X +y

3

The Python interactive shell can evaluate arbitrary Python expressions, including any basic arithmetic
expression.

(1]
® The interactive shell can execute arbitrary Python statements, including the print statement.
(3

You can also assign values to variables, and the values will be remembered as long as the shell is open
(but not any longer than that).

1.9. Summary

You should now have a version of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so, you need to be aware
your paths. If simply typing python on the command line doesn't run the version of Python that you want to use, you
may need to enter the full pathname of your preferred version.

Congratulations, and welcome to Python.

Dive Into Python 8

Chapter 2. Your First Python Program

You know how other books go on and on about programming fundamentals and finally work up to building a
complete, working program? Let's skip all that.

2.1. Diving in
Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don't worry about that, because you're going to dissect it line by line.
But read through it first and see what, if anything, you can make of it.

Example 2.1. odbchelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Returns string.
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if _name__=="_main__"
myParams = {"server":"mpilgrim", \
"database":"master", \
"uid":"sa", \
"pwd":"secret" \

print buildConnectionString(myParams)

Now run this program and see what happens.

In the ActivePython IDE oniWindows, you can run the Python program you're editing by choosing File—>Run...
(Ctrl-R). Output is displayed in the interactive window.

In the Python IDE on Mac. ®$, you can run a Python program with Python—>Run window... (Cmd-R), but there is
an important option you must set first. Open the .py file in the IDE, pop up the options menu by clicking the black

triangle in the upper-right corner of the window, and make sure the Run as __main__ option is checked. This is a
per—file setting, but you'll only need to do it once per file.

On UNIX-compatible systeins (including Mac OS X), you can run a Python program from the command line:
python odbchelper.py

The output of odbchelper.py will look like this:
server=mpilgrim;uid=sa;database=master;pwd=secret
2.2. Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or
interface/implementation sections like Pascal. When you need a function, just declare it, like this:

Dive Into Python 9

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def buildConnectionString(params):

Note that the keyword def starts the function declaration, followed by the function name, followed by the arguments
in parentheses. Multiple arguments (not shown here) are separated with commas.

Also note that the function doesn't define a return datatype. Python functions do not specify the datatype of their
return value; they don't even specify whether or not they return a value. In fact, every Python function returns a valt
if the function ever executes a return statement, it will return that value, otherwise it will return None, the Python
null value.

In Visual Basic, functions (that return a value) start with function, and subroutines (that do not return a value)

start with sub. There are no subroutines in Python. Everything is a function, all functions return a value (even if it's
None), and all functions start with def.

The argument, params, doesn't specify a datatype. In Python, variables are never explicitly typed. Python figures o
what type a variable is and keeps track of it internally.

In Java, C++, and other statically-typed languages, you must specify the datatype of the function return value and
each function argument. In Python, you never explicitly specify the datatype of anything. Based on what value you
assign, Python keeps track of the datatype internally.

2.2.1. How Python's Datatypes Compare to Other Programming Languages
An erudite reader sent me this explanation of how Python compares to other programming languages:

statically typed language
A language in which types are fixed at compile time. Most statically typed languages enforce this by requirin
you to declare all variables with their datatypes before using them. Java and C are statically typed language
dynamically typed language
A language in which types are discovered at execution time; the opposite of statically typed. VBScript and
Python are dynamically typed, because they figure out what type a variable is when you first assign it a valu
strongly typed language
A language in which types are always enforced. Java and Python are strongly typed. If you have an integer,
you can't treat it like a string without explicitly converting it.
weakly typed language
A language in which types may be ignored; the opposite of strongly typed. VBScript is weakly typed. In
VBScript, you can concatenate the string '12' and the integer 3 to get the string '123', then treat that as
the integer 123, all without any explicit conversion.

So Python is both dynamically typed (because it doesn't use explicit datatype declarations) and strongly typed (bec
once a variable has a datatype, it actually matters).

2.3. Documenting Functions

You can document a Python function by giving it a doc string.

Example 2.2. Defining the buildConnectionString Function's doc string

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Dive Into Python 10

Returns string.

Triple quotes signify a multi-line string. Everything between the start and end quotes is part of a single string,
including carriage returns and other quote characters. You can use them anywhere, but you'll see them most often
when defining a doc string.

Triple quotes are also an edasy way to define a string with both single and double quotes, like qg/.../ in Perl.
Everything between the triple quotes is the function's doc string, which documents what the function does. A
doc string, if it exists, must be the first thing defined in a function (that is, the first thing after the colon). You
don't technically need to give your function a doc string, but you always should. | know you've heard this in
every programming class you've ever taken, but Python gives you an added incentive: the doc string is available
at runtime as an attribute of the function.

Many Python IDEs use thezdoc string to provide context—sensitive documentation, so that when you type a
function name, its doc string appears as a tooltip. This can be incredibly helpful, but it's only as good as the doc
strings you write.

Further Reading on Documenting Functions

* PEP 257 (http://www.python.org/peps/pep—0257.html) defines doc string conventions.

* Python Style Guide (http://'www.python.org/doc/essays/styleguide.html) discusses how to write a good doc
string.

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in doc
strings (http://www.python.org/doc/current/tut/node6.htmI#SECTION006750000000000000000).

2.4. Everything Is an Object

In case you missed it, | just said that Python functions have attributes, and that those attributes are available at
runtime.

A function, like everything else in Python, is an object.

Open your favaorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function's doc string

>>> import odbchelper (1]

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> print odbchelper.buildConnectionString(params)
server=mpilgrim;uid=sa;database=master;pwd=secret

>>> print odbchelper.buildConnectionString.__doc___ (3]

Build a connection string from a dictionary

Returns string.

Q@ Thefirst line imports the odbchelper program as a module —— a chunk of code that you can use
interactively, or from a larger Python program. (You'll see examples of multi-module Python programs in
Chapter 4.) Once you import a module, you can reference any of its public functions, classes, or attributes.
Modules can do this to access functionality in other modules, and you can do it in the IDE too. This is an
important concept, and you'll talk more about it later.

Dive Into Python 11

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

® \When you want to use functions defined in imported modules, you need to include the module name. So you
can't just say buildConnectionString; it must be odbchelper.buildConnectionString. If
you've used classes in Java, this should feel vaguely familiar.

® |nstead of calling the function as you would expect to, you asked for one of the function's attributes, __doc___

import in Python is like require in Perl. Once you import a Python module, you access its functions with
module.function; once you require a Perl module, you access its functions with module::function.

2.4.1. The Import Search Path

Before you go any further, | want to briefly mention the library search path. Python looks in several places when yot
try to import a module. Specifically, it looks in all the directories defined in sys.path. This is just a list, and you
can easily view it or modify it with standard list methods. (You'll learn more about lists later in this chapter.)

Example 2.4. Import Search Path

>>> import sys 1]

>>> sys.path (2]

[, fusr/localllib/python2.2', ‘lusr/local/lib/python2.2/plat-linux2',
‘lusr/local/lib/python2.2/lib—dynload’, '/usr/local/lib/python2.2/site—packages’,
‘lusr/local/lib/python2.2/site—packages/PIL', ‘/usr/local/lib/python2.2/site—packages/piddle’]
>>> sys (3]

<module 'sys' (built=in)>

>>> gys.path.append(/my/new/path’) (4]

® mporting the sys module makes all of its functions and attributes available.

(2 sys.path is a list of directory names that constitute the current search path. (Yours will look different,
depending on your operating system, what version of Python you're running, and where it was originally
installed.) Python will look through these directories (in this order) for a .py file matching the module name
you're trying to import.

(3] Actually, | lied; the truth is more complicated than that, because not all modules are stored as .py files. Some,
like the sys module, are "built—=in modules"; they are actually baked right into Python itself. Built—in modules
behave just like regular modules, but their Python source code is not available, because they are not written i
Python! (The sys module is written in C.)

® You can add a new directory to Python's search path at runtime by appending the directory name to
sys.path, and then Python will look in that directory as well, whenever you try to import a module. The
effect lasts as long as Python is running. (You'll talk more about append and other list methods in Chapter 3.)

2.4.2. What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built-in
attribute __doc__, which returns the doc string defined in the function's source code. The sys module is an
object which has (among other things) an attribute called path. And so forth.

Still, this begs the question. What is an object? Different programming languages define "object" in different ways. |
some, it means that all objects must have attributes and methods; in others, it means that all objects are subclassal
In Python, the definition is looser; some objects have neither attributes nor methods (more on this in Chapter 3), an
not all objects are subclassable (more on this in Chapter 5). But everything is an object in the sense that it can be
assigned to a variable or passed as an argument to a function (more in this in Chapter 4).

This is so important that I'm going to repeat it in case you missed it the first few times: everything in Python is an
object. Strings are objects. Lists are objects. Functions are objects. Even modules are objects.

Dive Into Python 12

Further Reading on Obijects

« Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to say tha
everything in Python is an object (http://www.python.org/doc/current/ref/objects.html), because some people
are pedantic and like to discuss this sort of thing at great length.

« eff-bot (http://www.effbot.org/guides/) summarizes Python objects
(http:/Iwww.effbot.org/guides/python—-objects.htm).

2.5. Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where the function code starts and
stops. The only delimiter is a colon (:) and the indentation of the code itself.

Example 2.5. Indenting the buildConnectionString Function

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Returns string.
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

Code blocks are defined by their indentation. By "code block”, | mean functions, if statements, for loops, while
loops, and so forth. Indenting starts a block and unindenting ends it. There are no explicit braces, brackets, or
keywords. This means that whitespace is significant, and must be consistent. In this example, the function code
(including the doc string) is indented four spaces. It doesn't need to be four spaces, it just needs to be consistent.
The first line that is not indented is outside the function.

Example 2.6, if Statements shows an example of code indentation with if statements.

Example 2.6. if Statements

def fib(n):
print'n =" n
ifn>1:
return n * fib(n - 1)
else:
print 'end of the line'
return 1

o o0e

This is a function named fib that takes one argument, n. All the code within the function is indented.

Printing to the screen is very easy in Python, just use print. print statements can take any data

type, including strings, integers, and other native types like dictionaries and lists that you'll learn about
in the next chapter. You can even mix and match to print several things on one line by using a
comma-separated list of values. Each value is printed on the same line, separated by spaces (the
commas don't print). So when fib is called with 5, this will print "n = 5".

©® if statements are a type of code block. If the if expression evaluates to true, the indented block is
executed, otherwise it falls to the else block.

@ Of course if and else blocks can contain multiple lines, as long as they are all indented the same
amount. This else block has two lines of code in it. There is no other special syntax for multi-line
code blocks. Just indent and get on with your life.

®ee

Dive Into Python 13

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm

After some initial protests and several snide analogies to Fortran, you will make peace with this and start seeing its
benefits. One major benefit is that all Python programs look similar, since indentation is a language requirement an
not a matter of style. This makes it easier to read and understand other people's Python code.

Python uses carriage returAas/to separate statements and a colon and indentation to separate code blocks. C++ ant
Java use semicolons to separate statements and curly braces to separate code blocks.

Further Reading on Code Indentation

» Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross—platform indentation
issues and shows various indentation errors (http://www.python.org/doc/current/ref/indentation.html).
» Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as you
write them. Here's an example that uses the ifname___trick.

if _name__==" main__":

Some quick observations before you get to the good stuff. First, parentheses are not required around the if
expression. Second, the if statement ends with a colon, and is followed by indented code.

Like C, Python uses == fore&€omparison and = for assignment. Unlike C, Python does not support in—line assignmer
so there's no chance of accidentally assigning the value you thought you were comparing.

So why is this particular if statement a trick? Modules are objects, and all modules have a built-in attribute
__name__. Amodule's __name__ depends on how you're using the module. If you import the module, then
__name___is the module's filename, without a directory path or file extension. But you can also run the module
directly as a standalone program, in which case __name__ will be a special default value, __main__.

>>> import odbchelper
>>> odbchelper.__name__
‘odbchelper’

Knowing this, you can design a test suite for your module within the module itself by putting it in this if statement.
When you run the module directly, name__is __main__, so the test suite executes. When you import the
module, __name___is something else, so the test suite is ignored. This makes it easier to develop and debug new
modules before integrating them into a larger program.

On MacPython, there is aniadditional step to make the ihame___trick work. Pop up the module's options menu
by clicking the black triangle in the upper-right corner of the window, and make sure Run as __main___is checked.

Further Reading on Importing Modules

» Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low-level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

Dive Into Python 14

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes

You'll get back to your first Python program in just a minute. But first, a short digression is in order, because you ne
to know about dictionaries, tuples, and lists (oh my!). If you're a Perl hacker, you can probably skim the bits about
dictionaries and lists, but you should still pay attention to tuples.

3.1. Introducing Dictionaries

One of Python's built-in datatypes is the dictionary, which defines one—to—one relationships between keys and valt

A dictionary in Python is likeé a hash in Perl. In Perl, variables that store hashes always start with a % character. In
Python, variables can be named anything, and Python keeps track of the datatype internally.

A dictionary in Python is likeé an instance of the Hashtable class in Java.

A dictionary in Python is likeé an instance of the Scripting.Dictionary object in Visual Basic.
3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary

>>> d = {"server":"mpilgrim", "database":"master"} (1]
>>>d

{'server" 'mpilgrim’, 'database': 'master’}

>>> d["server”] (2]
‘mpilgrim’

>>> d["database"] (3]
‘master’

>>> d["mpilgrim”] (4]

Traceback (innermost last):
File "<interactive input>", line 1, in ?
KeyError: mpilgrim

Q9 st you create a new dictionary with two elements and assign it to the variable d. Each element is a
key—-value pair, and the whole set of elements is enclosed in curly braces.

® 'server is a key, and its associated value, referenced by d["server"], is 'mpilgrim’.
® 'database'is a key, and its associated value, referenced by d["'database"], is ‘'master".

@ vYoucan get values by key, but you can't get keys by value. So d["server"] is 'mpilgrim’, but
d["mpilgrim"] raises an exception, because 'mpilgrim' is not a key.

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary

>>>d

{'server": 'mpilgrim', 'database": 'master’}

>>> d["database"] = "pubs"

>>>d

{'server": 'mpilgrim’, 'database": 'pubsé

>>> d["uid"] = "sa"

>>>d

{'server": 'mpilgrim’, 'uid: 'sa’, 'database": 'pubs'}

Dive Into Python 15

@ You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the
old value.
® vou can add new key-value pairs at any time. This syntax is identical to modifying existing values. (Yes,
this will annoy you someday when you think you are adding new values but are actually just modifying
the same value over and over because your key isn't changing the way you think it is.)
Note that the new element (key 'uid’, value 'sa') appears to be in the middle. In fact, it was just a coincidence
that the elements appeared to be in order in the first example; it is just as much a coincidence that they appear to b
out of order now.

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are "out of order"; th
are simply unordered. This is an important distinction that will annoy you when you want to access the elements of
dictionary in a specific, repeatable order (like alphabetical order by key). There are ways of doing this, but they're n
built into the dictionary.

When working with dictionaries, you need to be aware that dictionary keys are case-sensitive.

Example 3.3. Dictionary Keys Are Case—Sensitive

>>>d = {}

>>> d["key"] = "value"

>>> d["key"] = "other value" (1]
>>>d

{key'": 'other value'}

>>> d['Key"] = "third value" (2]
>>>d

{'Key" 'third value', 'key": 'other value'}

o Assigning a value to an existing dictionary key simply replaces the old value with a new one.

® This is not assigning a value to an existing dictionary key, because strings in Python are case—sensitive, so
'key' is not the same as 'Key'. This creates a new key/value pair in the dictionary; it may look similar to
you, but as far as Python is concerned, it's completely different.

Example 3.4. Mixing Datatypes in a Dictionary

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'pubs'}

>>> d["retrycount"] = 3

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’, 'retrycount: 3}
>>> d[42] = "douglas"

>>>d

{'server": 'mpilgrim', 'uid": 'sa’, 'database': 'master’,

42:'douglas’, 'retrycount': 3}

® Dictionaries aren't just for strings. Dictionary values can be any datatype, including strings, integers,
objects, or even other dictionaries. And within a single dictionary, the values don't all need to be the
same type; you can mix and match as needed.

124 Dictionary keys are more restricted, but they can be strings, integers, and a few other types. You can also
mix and match key datatypes within a dictionary.

Dive Into Python 16

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’,

42: 'douglas', 'retrycount": 3}

>>> del d[42]

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’, 'retrycount’: 3}
>>> d.clear()

>>>d

{

Q dellets you delete individual items from a dictionary by key.

@ clear deletes all items from a dictionary. Note that the set of empty curly braces signifies a dictionary without
any items.

Further Reading on Dictionaries

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries
and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) has a lot of example
code using dictionaries (http://www.faqgts.com/knowledge-base/index.phtml/fid/541).

» Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values ¢
a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods
(http://www.python.org/doc/current/lib/typesmapping.html).

3.2. Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid) the
datastore in Powerbuilder, brace yourself for Python lists.

A list in Python is like an array in Perl. In Perl, variables that store arrays always start with the @ character; in
Python, variables can be named anything, and Python keeps track of the datatype internally.

A list in Python is much mere than an array in Java (although it can be used as one if that's really all you want out ¢
life). A better analogy would be to the ArrayList class, which can hold arbitrary objects and can expand
dynamically as new items are added.

3.2.1. Defining Lists

Example 3.6. Defining a List

>>> i =["a", "b", "mpilgrim", "z", "example"] 1)
>>> |

[a', 'b', ‘'mpilgrim’, 'z', 'example’]

>>> 1i[0] (2]
-

>>> |i[4] ©
‘example’

Dive Into Python 17

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html

Q9 First, you define a list of five elements. Note that they retain their original order. This is not an accident. A list
is an ordered set of elements enclosed in square brackets.

@ Alist can be used like a zero-based array. The first element of any non—-empty list is always li[0].
® The last element of this five—element list is li[4], because lists are always zero—based.

Example 3.7. Negative List Indices

>>> |j

>>> |i[-1]
‘example’
>>> [i[-3] (2]

‘mpilgrim'’

9 A negative index accesses elements from the end of the list counting backwards. The last element of
any non—-empty list is always li[-1].

O fthe negative index is confusing to you, think of it this way: li[—n] == li[len(li) — n]. So
in this list, li[-3] == li[5 — 3] == li[2].

Example 3.8. Slicing a List

>>> |i
['a', 'b', 'mpilgrim’, ‘example']
>>> |i[1:3]

7
(1]
['b', 'mpilgrim’]

>>> [i[1:-1] (2]
['b', 'mpilgrim’, ']
>>> [i[0:3] (3]

©® voucan get a subset of a list, called a "slice", by specifying two indices. The return value is a new list
containing all the elements of the list, in order, starting with the first slice index (in this case li[1]), up to but
not including the second slice index (in this case li[3]).

(2 Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way: reading the
list from left to right, the first slice index specifies the first element you want, and the second slice index
specifies the first element you don't want. The return value is everything in between.

® Lists are zero-based, so li[0:3] returns the first three elements of the list, starting at li[0], up to but not
including li[3].

Example 3.9. Slicing Shorthand

>>> |

[@a,'b', 'mpilgrim’, 'z', 'example’]
>>> [i[:3] (1]

[, 'b', 'mpilgrim’]

>>> i[3:]

[z', 'example’]

>>> [i[]

@ if the left slice index is 0, you can leave it out, and 0 is implied. So li[:3] is the same as |i[0:3] from
Example 3.8, Slicing a List .

(2 Similarly, if the right slice index is the length of the list, you can leave it out. So li[3:] is the same as
li[3:5], because this list has five elements.

Dive Into Python 18

©® Note the symmetry here. In this five—element list, li[:3] returns the first 3 elements, and li[3:] returns
the last two elements. In fact, li[:n] will always return the first n elements, and li[n:] will return the rest,
regardless of the length of the list.

© f both slice indices are left out, all elements of the list are included. But this is not the same as the original li
list; it is a new list that happens to have all the same elements. li[:] is shorthand for making a complete copy
of a list.

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List

>>> |i

[, 'b', 'mpilgrim’, 'z, 'example’]

>>> li.append("new") (1]
>>> i

['a', 'b', 'mpilgrim’, 'z', ‘'example’, 'new']

>>> li.insert(2, "new") (2]
>>> |j

[a', 'b', 'new', 'mpilgrim’, 'z, 'example’, 'new']

>>> |i.extend(["two", "elements"]) (3]
>>> |i

o append adds a single element to the end of the list.

® insertinserts a single element into a list. The numeric argument is the index of the first element that gets
bumped out of position. Note that list elements do not need to be unique; there are now two separate element
with the value 'new’, li[2] and li[6].

® extend concatenates lists. Note that you do not call extend with multiple arguments; you call it with one
argument, a list. In this case, that list has two elements.

Example 3.11. The Difference between extend and append

>>>li=[4a, b, 'c

>>> |i.extend(['d’, 'e', 'f]) 1]
>>> |i

[a, b, 'c, 'd, e, 'f]

>>> len(li) (2]
6

>>> |i[-1]

f
>>>li=[a, b, 'c]

>>> li.append(['d’, ', ']) (3]
>>> i

[a, b, c, [d, ‘e, f]]

>>> len(li) (4
4

>>> [i[-1]

[d', ‘e, 'f]

@ |ists have two methods, extend and append, that look like they do the same thing, but are in fact
completely different. extend takes a single argument, which is always a list, and adds each of the
elements of that list to the original list.

O Here you started with a list of three elements (‘a’, 'b', and 'c'), and you extended the list with a list
of another three elements ('d', 'e’, and 'f"), so you now have a list of six elements.
(3]

Dive Into Python 19

On the other hand, append takes one argument, which can be any data type, and simply adds it to the
end of the list. Here, you're calling the append method with a single argument, which is a list of three
elements.

Q@ Nowthe original list, which started as a list of three elements, contains four elements. Why four? Because
the last element that you just appended is itself a list. Lists can contain any type of data, including other
lists. That may be what you want, or maybe not. Don't use append if you mean extend.

3.2.3. Searching Lists

Example 3.12. Searching a List

>>> |i

>>> |i.index("example")

5
>>> [i.index("new") (2]
2
>>> |i.index("c") (3]

Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: list.index(x): x not in list
>>>"c"inli
False

@ index finds the first occurrence of a value in the list and returns the index.

® index finds the first occurrence of a value in the list. In this case, 'new' occurs twice in the list, in li[2]
and li[6], but index will return only the first index, 2.

® |f the value is not found in the list, Python raises an exception. This is notably different from most languages,
which will return some invalid index. While this may seem annoying, it is a good thing, because it means your
program will crash at the source of the problem, rather than later on when you try to use the invalid index.

© 70 test whether a value is in the list, use in, which returns True if the value is found or False if it is not.

Before version 2.2.1, Pythen had no separate boolean datatype. To compensate for this, Python accepted almost
anything in a boolean context (like an if statement), according to the following rules:

* O is false; all other numbers are true.

* An empty string (") is false, all other strings are true.

* An empty list ([]) is false; all other lists are true.

* An empty tuple (()) is false; all other tuples are true.

» An empty dictionary ({}) is false; all other dictionaries are true.

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value
True or False. Note the capitalization; these values, like everything else in Python, are case—sensitive.

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List

>>> |

>>> li.remove("z")
>>> |j

>>> [i.remove("new")

Dive Into Python 20

>>> |i

>>> li.remove('c")
Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: list.remove(x): X not in list

>>> li.pop()
‘elements'
>>> |

remove removes the first occurrence of a value from a list.

remove removes only the first occurrence of a value. In this case, 'new' appeared twice in the list, but
li.remove("new") removed only the first occurrence.

If the value is not found in the list, Python raises an exception. This mirrors the behavior of the index method.

pop is an interesting beast. It does two things: it removes the last element of the list, and it returns the value
that it removed. Note that this is different from li[—1], which returns a value but does not change the list, and
different from li.remove(value), which changes the list but does not return a value.

3.2.5. Using List Operators

oC® ©o©e

Example 3.14. List Operators

>>> |i = |i + ['example’, 'new’] 1]
>>> |

[@, 'b', 'mpilgrim’, 'example’, 'new']

>>> | += ['two’] (2]
>>> |

>>>[i=[1,2]*3
>>> |i
[1,2,1,2,1,2]

@ |ists can also be concatenated with the + operator. list = list + otherlist has the
same result as list.extend(otherlist). But the + operator returns a new (concatenated)
list as a value, whereas extend only alters an existing list. This means that extend is faster,
especially for large lists.

124 Python supports the += operator. li += [two'] is equivalent to li.extend(['two").
The += operator works for lists, strings, and integers, and it can be overloaded to work for
user—defined classes as well. (More on classes in Chapter 5.)

©® Ther operator works on lists as a repeater. li = [1, 2] * 3 is equivalent to li = [1,
2] +[1, 2] + [1, 2], which concatenates the three lists into one.

Further Reading on Lists

« How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists and
makes an important point about passing lists as function arguments
(http://www.ibiblio.org/obp/thinkCSpy/chap08.htm).

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and queues
(http://wvww.python.org/doc/current/tut/node7.htmI#SECTION007110000000000000000).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers common
guestions about lists (http://www.fagts.com/knowledge-base/index.phtml/fid/534) and has a lot of example
code using lists (http://www.faqgts.com/knowledge-base/index.phtml/fid/540).

Dive Into Python 21

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540

« Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq—mutable.html).

3.3. Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

Example 3.15. Defining a tuple

>>>t = ("a", "b", "mpilgrim", "z", "example") 0
>>>t

>>> {[0]

-

>>> {[-1]

‘example’

>>> {[1:3]

('b', 'mpilgrim’)

© ® ©®

9 A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses
instead of square brackets.

The elements of a tuple have a defined order, just like a list. Tuples indices are zero—based, just like a list, so
the first element of a non—empty tuple is always t[0].

(2]
© Negative indices count from the end of the tuple, just as with a list.
(4

Slicing works too, just like a list. Note that when you slice a list, you get a new list; when you slice a tuple, you
get a new tuple.

Example 3.16. Tuples Have No Methods

>>>t
>>> t.append("new")
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute ‘append’
>>> t.remove("z")
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute ‘remove’
>>> t.index("example™)
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'index’
>>>"z"int
True

©® You can't add elements to a tuple. Tuples have no append or extend method.
® You can't remove elements from a tuple. Tuples have no remove or pop method.
® vou cantfind elements in a tuple. Tuples have no index method.

@ You can, however, use in to see if an element exists in the tuple.
So what are tuples good for?

 Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it i

Dive Into Python 22

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

iterate through it, use a tuple instead of a list.

« It makes your code safer if you "write—protect” data that does not need to be changed. Using a tuple insteac
a list is like having an implied assert statement that shows this data is constant, and that special thought
(and a specific function) is required to override that.

« Remember that | said that dictionary keys can be integers, strings, and "a few other types"? Tuples are one
those types. Tuples can be used as keys in a dictionary, but lists can't be used this way.Actually, it's more
complicated than that. Dictionary keys must be immutable. Tuples themselves are immutable, but if you hav
a tuple of lists, that counts as mutable and isn't safe to use as a dictionary key. Only tuples of strings, numbs
or other dictionary—safe tuples can be used as dictionary keys.

« Tuples are used in string formatting, as you'll see shortly.

Tuples can be converted intolists, and vice—versa. The built-in tuple function takes a list and returns a tuple with
the same elements, and the list function takes a tuple and returns a list. In effect, tuple freezes a list, and list
thaws a tuple.

Further Reading on Tuples

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and
shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) shows how to sort a
tuple (http://www.fagts.com/knowledge-base/view.phtml/aid/4553/fid/587).

« Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one
element (http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000).

3.4. Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample program frc
Chapter 2, odbchelper.py.

Python has local and global variables like most other languages, but it has no explicit variable declarations. Variabl
spring into existence by being assigned a value, and they are automatically destroyed when they go out of scope.

Example 3.17. Defining the myParams Variable

if _name__=="_ main__":
myParams = {"server":"mpilgrim", \
"database":"master", \
"uid":"sa", \
"pwd":"secret" \

}

Notice the indentation. An if statement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over several lines, with a backslash ("\") serving as a
line—continuation marker.

When a command is split'@among several lines with the line—continuation marker ("\"), the continued lines can be
indented in any manner; Python's normally stringent indentation rules do not apply. If your Python IDE auto-indent:
the continued line, you should probably accept its default unless you have a burning reason not to.

Dive Into Python 23

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

Strictly speaking, expressions in parentheses, straight brackets, or curly braces (like defining a dictionary) can be s|
into multiple lines with or without the line continuation character ("\"). I like to include the backslash even when it's
not required because | think it makes the code easier to read, but that's a matter of style.

Third, you never declared the variable myParams, you just assigned a value to it. This is like VBScript without the
option explicit option. Luckily, unlike VBScript, Python will not allow you to reference a variable that has
never been assigned a value; trying to do so will raise an exception.

3.4.1. Referencing Variables

Example 3.18. Referencing an Unbound Variable

>>> X
Traceback (innermost last):

File "<interactive input>", line 1, in ?
NameError: There is no variable named 'x'
>>> =1
>>> X
1

You will thank Python for this one day.

3.4.2. Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple values at once.

Example 3.19. Assigning multiple values at once

>>>v=(a,'b,'e)

>>> (X, Y,2)=V (1]
>>> X

-

>>> y

b

>>> 7

e

Q@ visa tuple of three elements, and (x, y, z) is a tuple of three variables. Assigning one to the other
assigns each of the values of v to each of the variables, in order.

This has all sorts of uses. | often want to assign names to a range of values. In C, you would use enum and manua
list each constant and its associated value, which seems especially tedious when the values are consecutive. In Py
you can use the built-in range function with multi-variable assignment to quickly assign consecutive values.

Example 3.20. Assigning Consecutive Values

>>> range(7) (1]
[0,1,2,3,4,5, 6]

>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) (2]
>>> MONDAY (3]
0

>>> TUESDAY

1

>>> SUNDAY

Dive Into Python 24

@ The built-in range function returns a list of integers. In its simplest form, it takes an upper limit and returns a
zero—based list counting up to but not including the upper limit. (If you like, you can pass other parameters to
specify a base other than 0 and a step other than 1. You can print range.__doc___for details.)

® MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables y«
defining. (This example came from the calendar module, a fun little module that prints calendars, like the
UNIX program cal. The calendar module defines integer constants for days of the week.)

® Now each variable has its value: MONDAY is 0, TUESDAY is 1, and so forth.

You can also use multi-variable assignment to build functions that return multiple values, simply by returning a tupl
of all the values. The caller can treat it as a tuple, or assign the values to individual variables. Many standard Pytho
libraries do this, including the os module, which you'll discuss in Chapter 6.

Further Reading on Variables

* Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip th
line continuation character (http://www.python.org/doc/current/ref/implicit—joining.html) and when you need
to use it (http://www.python.org/doc/current/ref/explicit—joining.html).

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi-variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).

3.5. Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the most
basic usage is to insert values into a string with the %s placeholder.

String formatting in Pythonaises the same syntax as the sprintf function in C.

Example 3.21. Introducing String Formatting

>>> k = "uid"

>>>y ="sa"

>>> "%s=%s" % (k, v) (1]
'uid=sa'

©® The whole expression evaluates to a string. The first %s is replaced by the value of k; the second %s is repla
by the value of v. All other characters in the string (in this case, the equal sign) stay as they are.

Note that (k, v) is a tuple. | told you they were good for something.
You might be thinking that this is a lot of work just to do simple string concatentation, and you would be right, excer
that string formatting isn't just concatenation. It's not even just formatting. It's also type coercion.

Example 3.22. String Formatting vs. Concatenating

>>> uid = "sa"
>>> pwd = "secret"

>>> print pwd + " is not a good password for " + uid (1]
secret is not a good password for sa
>>> print "%s is not a good password for %s" % (pwd, uid) (2]

Dive Into Python 25

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

secret is not a good password for sa
>>> userCount = 6

>>> print "Users connected: %d" % (userCount,) ©0
Users connected: 6
>>> print "Users connected: " + userCount (5

Traceback (innermost last):
File "<interactive input>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

Q +isthe string concatenation operator.
® |n this trivial case, string formatting accomplishes the same result as concatentation.

© (userCount,) is a tuple with one element. Yes, the syntax is a little strange, but there's a good reason for
it: it's unambiguously a tuple. In fact, you can always include a comma after the last element when defining a
list, tuple, or dictionary, but the comma is required when defining a tuple with one element. If the comma
weren't required, Python wouldn't know whether (userCount) was a tuple with one element or just the value
of userCount.

o String formatting works with integers by specifying %d instead of %s.

15/ Trying to concatenate a string with a non—string raises an exception. Unlike string formatting, string
concatenation works only when everything is already a string.

As with printf in C, string formatting in Python is like a Swiss Army knife. There are options galore, and modifier
strings to specially format many different types of values.

Example 3.23. Formatting Numbers

>>> print "Today's stock price: %f" % 50.4625 (1]
50.462500

>>> print "Today's stock price: %.2f" % 50.4625 (2]
50.46

>>> print "Change since yesterday: %+.2f" % 1.5 (3]
+1.50

© The %f string formatting option treats the value as a decimal, and prints it to six decimal places.
® The ".2" modifier of the %f option truncates the value to two decimal places.

® You can even combine modifiers. Adding the + modifier displays a plus or minus sign before the value. Note
that the ".2" modifier is still in place, and is padding the value to exactly two decimal places.

Further Reading on String Formatting

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting
format characters (http://www.python.org/doc/current/lib/typesseq-strings.html).

« Effective AWK Programming (http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk) Top) discusses all
the format characters (http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk)Control+Letters) and
advanced string formatting techniques like specifying width, precision, and zero—padding
(http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk)Format+Modifiers).

3.6. Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a compact way of mapping &
list into another list by applying a function to each of the elements of the list.

Example 3.24. Introducing List Comprehensions

Dive Into Python 26

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

>>>1i=[1,9,8, 4]

>>> [elem*2 for elem in Ii] (1]
[2, 18, 16, 8]

>>> |i (2]
[1,9, 8, 4]

>>> |i = [elem*2 for elem in li] (3]
>>> |

[2, 18, 16, 8]

©® To make sense of this, look at it from right to left. li is the list you're mapping. Python loops through li one
element at a time, temporarily assigning the value of each element to the variable elem. Python then applies
the function elem*2 and appends that result to the returned list.

® Note that list comprehensions do not change the original list.

® |tis safe to assign the result of a list comprehension to the variable that you're mapping. Python constructs th
new list in memory, and when the list comprehension is complete, it assigns the result to the variable.
Here are the list comprehensions in the buildConnectionString function that you declared in Chapter 2:

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you're calling the items function of the params dictionary. This function returns a list of tuples of
all the data in the dictionary.

Example 3.25. The keys, values, and items Functions

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.keys()

['server', 'uid', 'database’, 'pwd']

>>> params.values() (2]

['mpilgrim’, 'sa’, 'master’, 'secret]

>>> params.items()

[(‘'server', 'mpilgrim’), (‘'uid’, 'sa’), (‘database’, 'master’), (‘pwd’, 'secret")]

Q@ The keys method of a dictionary returns a list of all the keys. The list is not in the order in
which the dictionary was defined (remember that elements in a dictionary are unordered),
but it is a list.

® The values method returns a list of all the values. The list is in the same order as the list
returned by keys, so params.values()[n] == params[params.keys()[n]]
for all values of n.

® The items method returns a list of tuples of the form (key, value). The list contains

all the data in the dictionary.
Now let's see what buildConnectionString does. It takes a list, params.items(), and maps it to a new list
by applying string formatting to each element. The new list will have the same number of elements as
params.items(), but each element in the new list will be a string that contains both a key and its associated value
from the params dictionary.

Example 3.26. List Comprehensions in buildConnectionString, Step by Step

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.items()

[(‘'server', 'mpilgrim"), (‘'uid’, 'sa’), (‘database’, 'master’), (‘pwd', 'secret’
>>> [k for k, v in params.items()]

—

|

® Qe

>>> [v for k, v in params.items()]

Dive Into Python 27

['mpilgrim’, 'sa’, 'master’, 'secret’]
>>> ["%s=%s" % (k, v) for k, v in params.items()] (3]
['server=mpilgrim’, 'uid=sa', 'database=master’, 'pwd=secret’]

@ Note that you're using two variables to iterate through the params.items() list. This is another use of
multi-variable assignment. The first element of params.items() is ('server', 'mpilgrim’), so in
the first iteration of the list comprehension, k will get 'server' and v will get 'mpilgrim’. In this case,
you're ignoring the value of v and only including the value of k in the returned list, so this list comprehension
ends up being equivalent to params.keys().

O Here you're doing the same thing, but ignoring the value of k, so this list comprehension ends up being
equivalent to params.values().

© Combining the previous two examples with some simple string formatting, you get a list of strings that include
both the key and value of each element of the dictionary. This looks suspiciously like the output of the prograr
All that remains is to join the elements in this list into a single string.

Further Reading on List Comprehensions

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists using the
built—-in map function
(http://www.python.org/doc/current/tut/node7.htmI#SECTIONO007130000000000000000).

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list comprehensions
(http://www.python.org/doc/current/tut/node7.htmI#SECTIONO007140000000000000000).

3.7. Joining Lists and Splitting Strings

You have a list of key-value pairs in the form key=value, and you want to join them into a single string. To join
any list of strings into a single string, use the join method of a string object.

Here is an example of joining a list from the buildConnectionString function:
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

One interesting note before you continue. | keep repeating that functions are objects, strings are objects... everythir
an object. You might have thought | meant that string variables are objects. But no, look closely at this example anc
you'll see that the string ";" itself is an object, and you are calling its join method.

The join method joins the elements of the list into a single string, with each element separated by a semi-colon. Th
delimiter doesn't need to be a semi—colon; it doesn't even need to be a single character. It can be any string.

join works only on lists of stkings; it does not do any type coercion. Joining a list that has one or more non-string
elements will raise an exception.

Example 3.27. Output of odbchelper.py

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> ["%s=%s" % (k, v) for k, v in params.items()]

['server=mpilgrim’, 'uid=sa’, 'database=master’, '‘pwd=secret']

>>> " " join(["%s=%s" % (k, v) for k, v in params.items()])
'server=mpilgrim;uid=sa;database=master;pwd=secret’

This string is then returned from the odbchelper function and printed by the calling block, which gives you the
output that you marveled at when you started reading this chapter.

Dive Into Python 28

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

You're probably wondering if there's an analogous method to split a string into a list. And of course there is, and it's
called split.

Example 3.28. Splitting a String

>>> |i = ['server=mpilgrim’, 'uid=sa’, 'database=master', 'pwd=secret']
>>> s = ";" join(li)
>>> S

'server=mpilgrim;uid=sa;database=master;pwd=secret’

>>> s.split(";")

['server=mpilgrim’, 'uid=sa', 'database=master’, 'pwd=secret’]
>>> s.split(";", 1)

['server=mpilgrim’, 'uid=sa;database=master;pwd=secret]

o split reverses join by splitting a string into a multi—element list. Note that the delimiter (*;") is
stripped out completely; it does not appear in any of the elements of the returned list.

® split takes an optional second argument, which is the number of times to split. (""Oooooh, optional
arguments..." You'll learn how to do this in your own functions in the next chapter.)

anystring.split(delimiter, 1) is/a useful technique when you want to search a string for a substring and
then work with everything before the substring (which ends up in the first element of the returned list) and
everything after it (which ends up in the second element).

Further Reading on String Methods

» Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common
guestions about strings (http://www.fagts.com/knowledge—base/index.phtml/fid/480) and has a lot of exampl
code using strings (http://www.fagts.com/knowledge-base/index.phtml/fid/539).

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods
(http://www.python.org/doc/current/lib/string—methods.html).

» Python Library Reference (http://www.python.org/doc/current/lib/) documents the string module
(http:/iwvww.python.org/doc/current/lib/module-string.html).

» The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why join is a string method
(http://www.python.org/cgi—bin/fagw.py?query=4.96&querytype=simple&casefold=yes&reqg=search) instead
of a list method.

3.7.1. Historical Note on String Methods

When | first learned Python, | expected join to be a method of a list, which would take the delimiter as an argument.
Many people feel the same way, and there's a story behind the join method. Prior to Python 1.6, strings didn't have
all these useful methods. There was a separate string module that contained all the string functions; each function
took a string as its first argument. The functions were deemed important enough to put onto the strings themselves,
which made sense for functions like lower, upper, and split. But many hard—core Python programmers objected

to the new join method, arguing that it should be a method of the list instead, or that it shouldn't move at all but
simply stay a part of the old string module (which still has a lot of useful stuff in it). | use the new join method
exclusively, but you will see code written either way, and if it really bothers you, you can use the old string.join
function instead.

3.8. Summary

The odbchelper.py program and its output should now make perfect sense.

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Dive Into Python 29

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

Returns string.""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if _name__ =="_ main__"
myParams = {"server":"mpilgrim”, \
"database":"master”, \
"uid":"sa", \
"pwd":"secret" \

print buildConnectionString(myParams)
Here is the output of odbchelper.py:
server=mpilgrim;uid=sa;database=master;pwd=secret
Before diving into the next chapter, make sure you're comfortable doing all of these things:

« Using the Python IDE to test expressions interactively

« Writing Python programs and running them from within your IDE, or from the command line

« Importing modules and calling their functions

 Declaring functions and using doc strings, local variables, and proper indentation

« Defining dictionaries, tuples, and lists

« Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and modules
« Concatenating values through string formatting

* Mapping lists into other lists using list comprehensions

« Splitting strings into lists and joining lists into strings

Dive Into Python 30

Chapter 4. The Power Of Introspection

This chapter covers one of Python's strengths: introspection. As you know, everything in Python is an object, and
introspection is code looking at other modules and functions in memory as objects, getting information about them,
and manipulating them. Along the way, you'll define functions with no name, call functions with arguments out of
order, and reference functions whose names you don't even know ahead of time.

4.1. Diving In

Here is a complete, working Python program. You should understand a good deal about it just by looking at it. The
numbered lines illustrate concepts covered in Chapter 2, Your First Python Program. Don't worry if the rest of the
code looks intimidating; you'll learn all about it throughout this chapter.

Example 4.1. apihelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

def info(object, spacing=10, collapse=1): 006
""" Print methods and doc strings.

Takes module, class, list, dictionary, or string.
methodList = [method for method in dir(object) if callable(getattr(object, method))]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))
for method in methodList])

if _name__=="_main__" 006
print info.__doc___

This module has one function, info. According to its function declaration, it takes three parameters: object,
spacing, and collapse. The last two are actually optional parameters, as you'll see shortly.

The info function has a multi-line doc string that succinctly describes the function's purpose. Note that
no return value is mentioned; this function will be used solely for its effects, rather than its value.

Code within the function is indented.

The if __name___ trick allows this program do something useful when run by itself, without interfering with
its use as a module for other programs. In this case, the program simply prints out the doc string of the
info function.

® if statements use == for comparison, and parentheses are not required.

The info function is designed to be used by you, the programmer, while working in the Python IDE. It takes any
object that has functions or methods (like a module, which has functions, or a list, which has methods) and prints ol
the functions and their doc strings.

o © ©

Example 4.2. Sample Usage of apihelper.py

>>> from apihelper import info

>>>i=]

>>> info(li)

append L.append(object) —— append object to end

Dive Into Python 31

http://diveintopython.org/download/diveintopython-examples-5.4.zip

count L.count(value) —> integer —— return number of occurrences of value
extend L.extend(list) —— extend list by appending list elements

index L.index(value) —> integer —— return index of first occurrence of value
insert L.insert(index, object) —— insert object before index

pop L.pop([index]) —> item —— remove and return item at index (default last)
remove L.remove(value) —— remove first occurrence of value

reverse L.reverse() —— reverse *IN PLACE*

sort L.sort([cmpfunc]) —— sort *IN PLACE?; if given, cmpfunc(x, y) => -1, 0, 1

By default the output is formatted to be easy to read. Multi-line doc strings are collapsed into a single long line,
but this option can be changed by specifying 0 forablapse argument. If the function names are longer than 10
characters, you can specify a larger value fosgiaing argument to make the output easier to read.

Example 4.3. Advanced Usage of apihelper.py

>>> import odbchelper

>>> info(odbchelper)

buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30)

buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30, 0)
buildConnectionString Build a connection string from a dictionary

Returns string.

4.2. Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the argument, the argumer
gets its default value. Futhermore, arguments can be specified in any order by using named arguments. Stored
procedures in SQL Server Transact/SQL can do this, so if you're a SQL Server scripting guru, you can skim this pa

Here is an example of info, a function with two optional arguments:
def info(object, spacing=10, collapse=1):

spacing and collapse are optional, because they have default values defined. object is required, because it has
no default value. If info is called with only one argument, spacing defaults to 10 and collapse defaults to 1. If
info is called with two arguments, collapse still defaults to 1.

Say you want to specify a value for collapse but want to accept the default value for spacing. In most
languages, you would be out of luck, because you would need to call the function with three arguments. But in
Python, arguments can be specified by name, in any order.

Example 4.4. Valid Calls of info

info(odbchelper)

info(odbchelper, 12)
info(odbchelper, collapse=0)
info(spacing=15, object=odbchelper)

co0e

Q with only one argument, spacing gets its default value of 10 and collapse gets its default value of
1.

@ With two arguments, collapse gets its default value of 1.

Dive Into Python 32

® Here you are naming the collapse argument explicitly and specifying its value. spacing still gets its
default value of 10.

@ Even required arguments (like object, which has no default value) can be named, and named

arguments can appear in any order.
This looks totally whacked until you realize that arguments are simply a dictionary. The "normal" method of calling
functions without argument names is actually just a shorthand where Python matches up the values with the argum
names in the order they're specified in the function declaration. And most of the time, you'll call functions the
"normal" way, but you always have the additional flexibility if you need it.

The only thing you need toado to call a function is specify a value (somehow) for each required argument; the
manner and order in which you do that is up to you.

Further Reading on Optional Arguments

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default
arguments are evaluated
(http://www.python.org/doc/current/tut/node6.htmi#SECTION006710000000000000000), which matters
when the default value is a list or an expression with side effects.

4.3. Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built—in functions. All other functions are partitioned off into modules.
This was actually a conscious design decision, to keep the core language from getting bloated like other scripting
languages (cough cough, Visual Basic).

4.3.1. The type Function

The type function returns the datatype of any arbitrary object. The possible types are listed in the types module.
This is useful for helper functions that can handle several types of data.

Example 4.5. Introducing type

>>> type(1) o
<type 'int’>

>>>i=]

>>> type(li) (2]
<type 'list’>

>>> import odbchelper

>>> type(odbchelper)

<type 'module'>

>>> import types (4
>>> type(odbchelper) == types.ModuleType
True

1 type takes anything —— and | mean anything —— and returns its datatype. Integers, strings, lists,
dictionaries, tuples, functions, classes, modules, even types are acceptable.

type can take a variable and return its datatype.
type also works on modules.

You can use the constants in the types module to compare types of objects. This is what the info
function does, as you'll see shortly.

o0

Dive Into Python 33

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

4.3.2. The str Function

The str coerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

>>> str(1) (1]
T

>>> horsemen = ['war’, 'pestilence’, ‘famine’]

>>> horsemen

['war', 'pestilence’, ‘famine’]

>>> horsemen.append(‘Powerbuilder’)

>>> str(horsemen)

"['war', 'pestilence’, 'famine’, 'Powerbuilder]"

>>> str(odbchelper)

"<module 'odbchelper' from 'c:\\dochook\\dip\\py\\odbchelper.py'>"
>>> str(None) (4]

‘None'

Q9 ror simple datatypes like integers, you would expect str to work, because almost every language has a
function to convert an integer to a string.

@ However, str works on any object of any type. Here it works on a list which you've constructed in bits and
pieces.

® st also works on modules. Note that the string representation of the module includes the pathname of the
module on disk, so yours will be different.

© A subtle but important behavior of str is that it works on None, the Python null value. It returns the string
'None'. You'll use this to your advantage in the info function, as you'll see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attributes and methods of any
object: modules, functions, strings, lists, dictionaries... pretty much anything.

Example 4.7. Introducing dir

>>>i=]

>>> dir(li) (1

['append’, ‘count’, 'extend’, 'index’, 'insert’,

‘pop’, 'remove’, ‘reverse’, 'sort’]

>>>d={}

>>> dir(d) (2]

[clear', 'copy’, 'get', 'has_key', 'items', 'keys', 'setdefault’, 'update’, 'values']
>>> import odbchelper

>>> dir(odbchelper)

[__builtins__'," doc_'' file_',' name__', 'buildConnectionString']

Q Jiisalist, so dir(li) returns a list of all the methods of a list. Note that the returned list contains the names
of the methods as strings, not the methods themselves.

® disa dictionary, so dir(d) returns a list of the names of dictionary methods. At least one of these, keys,
should look familiar.

® Thisis where it really gets interesting. odbchelper is a module, so dir(odbchelper) returns a list of all
kinds of stuff defined in the module, including built-in attributes, like __name__, doc__, and whatever
other attributes and methods you define. In this case, odbchelper has only one user—defined method, the
buildConnectionString function described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or False otherwise.

Dive Into Python 34

Callable objects include functions, class methods, even classes themselves. (More on classes in the next chapter.)

Example 4.8. Introducing callable

>>> import string

>>> string.punctuation
TH$%E&\'()*+,—.[;<=>?@[\]"_{|}~'
>>> string.join

<function join at 00C55A7C>
>>> callable(string.punctuation)
False

>>> callable(string.join)

True

>>> print string.join.__doc__
join(list [,sep]) —> string

@ 0 ® ®© @Q

Return a string composed of the words in list, with
intervening occurrences of sep. The default separator is a
single space.

(joinfields and join are synonymous)

©® The functions in the string module are deprecated (although many people still use the join
function), but the module contains a lot of useful constants like this string.punctuation,
which contains all the standard punctuation characters.

string.join is a function that joins a list of strings.

string.punctuation is not callable; it is a string. (A string does have callable methods, but
the string itself is not callable.)

string.join is callable; it's a function that takes two arguments.
Any callable object may have a doc string. By using the callable function on each of an
object's attributes, you can determine which attributes you care about (methods, functions, classes)

and which you want to ignore (constants and so on) without knowing anything about the object
ahead of time.

4.3.3. Built—=In Functions

@0 o0

type, str, dir, and all the rest of Python's built-in functions are grouped into a special module called
__builtin__. (That's two underscores before and after.) If it helps, you can think of Python automatically
executing from __ builtin__import * on startup, which imports all the "built-in" functions into the
namespace so you can use them directly.

The advantage of thinking like this is that you can access all the built-in functions and attributes as a group by getti
information about the __ builtin__ module. And guess what, Python has a function called info. Try it yourself

and skim through the list now. We'll dive into some of the more important functions later. (Some of the built—in error
classes, like AttributeError, should already look familiar.)

Example 4.9. Built-in Attributes and Functions

>>> from apihelper import info

>>> import __ builtin__

>>> info(__builtin__, 20)

ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.

AttributeError Attribute not found.

Dive Into Python 35

EOFError Read beyond end of file.
EnvironmentError Base class for I/O related errors.

Exception Common base class for all exceptions.
FloatingPointError Floating point operation failed.
IOError 1/0 operation failed.

[...snip...]

Python comes with excellent reference manuals, which you should peruse thoroughly to learn all the modules Pyth
has to offer. But unlike most languages, where you would find yourself referring back to the manuals or man pages
to remind yourself how to use these modules, Python is largely self-documenting.

Further Reading on Built—In Functions

» Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built—in functions
(http://www.python.org/doc/current/lib/built—in—funcs.html) and all the built-in exceptions
(http://www.python.org/doc/current/lib/module—exceptions.html).

4.4. Getting Object References With getattr

You already know that Python functions are objects. What you don't know is that you can get a reference to a funct
without knowing its name until run—time, by using the getattr function.

Example 4.10. Introducing getattr

>>> |i = ["Larry", "Curly"]

>>> li.pop 1
<built-in method pop of list object at 010DF884>
>>> getattr(li, "pop") (2]
<built-in method pop of list object at 010DF884>
>>> getattr(li, "append")("Moe")

>>> |i
[*Larry", "Curly", "Moe"]
>>> getattr({}, "clear") (4]

<built-in method clear of dictionary object at 00F113D4>
>>> getattr((), "pop") (5]
Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'pop’

Q@ This gets a reference to the pop method of the list. Note that this is not calling the pop method; that would be
li.pop(). This is the method itself.

® This also returns a reference to the pop method, but this time, the method name is specified as a string
argument to the getattr function. getattr is an incredibly useful built—in function that returns any
attribute of any object. In this case, the object is a list, and the attribute is the pop method.

® |ncaseit hasn't sunk in just how incredibly useful this is, try this: the return value of getattr is the method,
which you can then call just as if you had said li.append("Moe") directly. But you didn't call the function
directly; you specified the function name as a string instead.

getattr also works on dictionaries.

In theory, getattr would work on tuples, except that tuples have no methods, so getattr will raise an
exception no matter what attribute name you give.

(o)

Dive Into Python 36

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

4.4.1. getattr with Modules

getattr isn't just for built—in datatypes. It also works on modules.

Example 4.11. The getattr Function in apihelper.py

>>> import odbchelper

>>> odbchelper.buildConnectionString
<function buildConnectionString at 00D18DD4>
>>> getattr(odbchelper, "buildConnectionString") (2]
<function buildConnectionString at 00D18DD4>
>>> object = odbchelper

>>> method = "buildConnectionString"

>>> getattr(object, method)

<function buildConnectionString at 00D18DD4>
>>> type(getattr(object, method)) (4
<type 'function'>

>>> import types

>>> type(getattr(object, method)) == types.FunctionType

True

>>> callable(getattr(object, method)) (5]
True

®

@ This returns a reference to the buildConnectionString function in the odbchelper module, which
you studied in Chapter 2, Your First Python Program. (The hex address you see is specific to my machine; yo
output will be different.)

2] Using getattr, you can get the same reference to the same function. In general, getattr(object,
"attribute") is equivalent to object.attribute. If object is a module, then attribute can be
anything defined in the module: a function, class, or global variable.

® And this is what you actually use in the info function. object is passed into the function as an argument;
method is a string which is the name of a method or function.

@ Inthis case, method is the name of a function, which you can prove by getting its type.
© Since method is a function, it is callable.
4.4.2. getattr As a Dispatcher

A common usage pattern of getattr is as a dispatcher. For example, if you had a program that could output data in
a variety of different formats, you could define separate functions for each output format and use a single dispatch
function to call the right one.

For example, let's imagine a program that prints site statistics in HTML, XML, and plain text formats. The choice of
output format could be specified on the command line, or stored in a configuration file. A statsout module defines
three functions, output_html, output_xml, and output_text. Then the main program defines a single

output function, like this:

Example 4.12. Creating a Dispatcher with getattr

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format)
return output_function(data)

ol

Dive Into Python 37

Q@ The output function takes one required argument, data, and one optional argument, format. If format is
not specified, it defaults to text, and you will end up calling the plain text output function.

® vou concatenate the format argument with "output_" to produce a function name, and then go get that
function from the statsout module. This allows you to easily extend the program later to support other
output formats, without changing this dispatch function. Just add another function to statsout named, for
instance, output_pdf, and pass "pdf" as the format into the output function.

® Now you can simply call the output function in the same way as any other function. The output_function
variable is a reference to the appropriate function from the statsout module.

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and there is no

error checking. What happens if the user passes in a format that doesn't have a corresponding function defined in

statsout? Well, getattr will return None, which will be assigned to output_function instead of a valid

function, and the next line that attempts to call that function will crash and raise an exception. That's bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
return output_function(data)

@ This function call is guaranteed to work, because you added a third argument to the call to getattr.
The third argument is a default value that is returned if the attribute or method specified by the second
argument wasn't found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you'll see even more powerful

examples of it in later chapters.

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Section 3.¢
Mapping Lists). This can be combined with a filtering mechanism, where some elements in the list are mapped
while others are skipped entirely.

Here is the list filtering syntax:
[mapping—expression for element in source-list if filter—expression]

This is an extension of the list comprehensions that you know and love. The first two thirds are the same; the last p
starting with the if, is the filter expression. A filter expression can be any expression that evaluates true or false
(which in Python can be almost anything). Any element for which the filter expression evaluates true will be include
in the mapping. All other elements are ignored, so they are never put through the mapping expression and are not
included in the output list.

Example 4.14. Introducing List Filtering

>>> i = ["a", "mpilgrim", “foo", "b", "c", "b", "d", "d"]

>>> [elem for elem in li if len(elem) > 1] (1]
['mpilgrim’, 'foo']
>>> [elem for elem in li if elem !="b"] (2]

Dive Into Python 38

['a', 'mpilgrim’, ‘foo’, 'c', 'd’, 'd]
>>> [elem for elem in li if li.count(elem) == 1] (3]
['a', ‘'mpilgrim’, 'foo’, 'c']

Q9 The mapping expression here is simple (it just returns the value of each element), so concentrate on the filter
expression. As Python loops through the list, it runs each element through the filter expression. If the filter
expression is true, the element is mapped and the result of the mapping expression is included in the returnec
list. Here, you are filtering out all the one—character strings, so you're left with a list of all the longer strings.

(2] Here, you are filtering out a specific value, b. Note that this filters all occurrences of b, since each time it
comes up, the filter expression will be false.

® countis a list method that returns the number of times a value occurs in a list. You might think that this filter
would eliminate duplicates from a list, returning a list containing only one copy of each value in the original
list. But it doesn't, because values that appear twice in the original list (in this case, b and d) are excluded
completely. There are ways of eliminating duplicates from a list, but filtering is not the solution.

Let's get back to this line from apihelper.py:

methodList = [method for method in dir(object) if callable(getattr(object, method))]

This looks complicated, and it is complicated, but the basic structure is the same. The whole filter expression return
list, which is assigned to the methodList variable. The first half of the expression is the list mapping part. The
mapping expression is an identity expression, which it returns the value of each element. dir(object) returns a list
of object's attributes and methods —- that's the list you're mapping. So the only new patrt is the filter expression
after the if.

The filter expression looks scary, but it's not. You already know about callable, getattr, and in. As you saw in
the previous section, the expression getattr(object, method) returns a function object if object is a
module and method is the name of a function in that module.

So this expression takes an object (hamed object). Then it gets a list of the names of the object's attributes,
methods, functions, and a few other things. Then it filters that list to weed out all the stuff that you don't care about.
You do the weeding out by taking the name of each attribute/method/function and getting a reference to the real thi
via the getattr function. Then you check to see if that object is callable, which will be any methods and functions,
both built-in (like the pop method of a list) and user—defined (like the buildConnectionString function of the
odbchelper module). You don't care about other attributes, like the __name___ attribute that's built in to every
module.

Further Reading on Filtering Lists
e Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the

built=in filter function
(http://mww.python.org/doc/current/tut/node7.htmI#SECTIONO007130000000000000000).

4.6. The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return boolean values; instead,
they return one of the actual values they are comparing.

Example 4.15. Introducing and

>>>'a'and 'b' (1]

Dive Into Python 39

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

b
>>>"and 'b' (2]

>>>'a'and 'b' and 'c’ (3]
o

©® \Wwhen using and, values are evaluated in a boolean context from left to right. 0, ", [], (), {}, and
None are false in a boolean context; everything else is true. Well, almost everything. By default,
instances of classes are true in a boolean context, but you can define special methods in your class to
make an instance evaluate to false. You'll learn all about classes and special methods in Chapter 5. If all
values are true in a boolean context, and returns the last value. In this case, and evaluates 'a’, which is
true, then 'b’, which is true, and returns 'b'.

O any value is false in a boolean context, and returns the first false value. In this case, " is the first
false value.

® Al values are true, so and returns the last value, 'c'.

Example 4.16. Introducing or

>>>'a' or 'b' (1]
o
>>>"or'b’ (2]
b
>>>"or[] or {} (3]

{

>>> def sidefx():

print "in sidefx()"

return 1
>>>'a' or sidefx() (4
'y

When using or, values are evaluated in a boolean context from left to right, just like and. If any value is true,
or returns that value immediately. In this case, 'a’ is the first true value.

or evaluates ", which is false, then 'b', which is true, and returns 'b'.

(1]

(2]

® fall values are false, or returns the last value. or evaluates ", which is false, then [], which is false, then
{}, which is false, and returns {}.

4]

Note that or evaluates values only until it finds one that is true in a boolean context, and then it ignores the
rest. This distinction is important if some values can have side effects. Here, the function sidefx is never
called, because or evaluates 'a’, which is true, and returns 'a’ immediately.

If you're a C hacker, you are certainly familiar with the bool ? a : b expression, which evaluates to a ifool is

true, and b otherwise. Because of the way and and or work in Python, you can accomplish the same thing.

4.6.1. Using the and-or Trick

Example 4.17. Introducing the and—or Trick

>>> g = "first"
>>> b = "second"

>>>J]andaorb (1]
first'

>>>0andaorb (2]
'second'

(1]

Dive Into Python 40

This syntax looks similar to the bool ? a : b expression in C. The entire expression is evaluated

from left to right, so the and is evaluated first. 1 and 'first' evalutes to 'first', then

first' or 'second' evalutes to "first'.
@ 0 and first' evalutes to False, and then 0 or 'second' evaluates to 'second'.
However, since this Python expression is simply boolean logic, and not a special construct of the language, there is
one extremely important difference between this and-or trick in Python and the bool ? a : b syntax in C. If the
value of a is false, the expression will not work as you would expect it to. (Can you tell | was bitten by this? More
than once?)

Example 4.18. When the and-or Trick Fails

>>>g=""

>>> b = "second"

>>>J]andaorb (1]
'second'

©® Sinceaisan empty string, which Python considers false in a boolean context, 1 and " evalutes to ", and
then " or 'second' evalutes to 'second’. Oops! That's not what you wanted.

The and-or trick, bool and a or b, will not work like the C expression bool ? a: b when a is false in a

boolean context.

The real trick behind the and-or trick, then, is to make sure that the value of a is never false. One common way of

doing this is to turn a into [a] and b into [b], then taking the first element of the returned list, which will be either a
or b.

Example 4.19. Using the and-or Trick Safely

>>>g ="
>>> b = "second"
>>> (1 and [a] or [b])[0] o

Q Since [a] is a non—empty list, it is never false. Even if a is O or " or some other false value, the list [a] is

true because it has one element.
By now, this trick may seem like more trouble than it's worth. You could, after all, accomplish the same thing with at
if statement, so why go through all this fuss? Well, in many cases, you are choosing between two constant values, :
you can use the simpler syntax and not worry, because you know that the a value will always be true. And even if y
need to use the more complicated safe form, there are good reasons to do so. For example, there are some cases
Python where if statements are not allowed, such as in lambda functions.

Further Reading on the and-or Trick

» Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the
and-or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).

4.7. Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini—functions on the fly. Borrowed from Lisp,
these so—called lambda functions can be used anywhere a function is required.

Dive Into Python 41

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Example 4.20. Introducing lambda Functions

>>> def f(x):
return x*2

>>> f(3)

6

>>> g = lambda x: x*2 (1]
>>> g(3)

6

>>> (lambda x: x*2)(3) (2]
6

@ This is a lambda function that accomplishes the same thing as the normal function above it. Note the
abbreviated syntax here: there are no parentheses around the argument list, and the return keyword is
missing (it is implied, since the entire function can only be one expression). Also, the function has no name, b
it can be called through the variable it is assigned to.

® You can use a lambda function without even assigning it to a variable. This may not be the most useful thing
in the world, but it just goes to show that a lambda is just an in—line function.

To generalize, a lambda function is a function that takes any number of arguments (including optional arguments)

and returns the value of a single expression. lambda functions can not contain commands, and they can not contail

more than one expression. Don't try to squeeze too much into a lambda function; if you need something more
complex, define a hormal function instead and make it as long as you want.

lambda functions are a matter of style. Using them is never required; anywhere you could use them, you could
define a separate normal function and use that instead. | use them in places where | want to encapsulate specific,
non-reusable code without littering my code with a lot of little one-line functions.

4.7.1. Real-World lambda Functions
Here are the lambda functions in apihelper.py:

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
Notice that this uses the simple form of the and—or trick, which is okay, because a lambda function is always true
in a boolean context. (That doesn't mean that a lambda function can't return a false value. The function is always
true; its return value could be anything.)
Also notice that you're using the split function with no arguments. You've already seen it used with one or two

arguments, but without any arguments it splits on whitespace.

Example 4.21. split With No Arguments

>>> s = "this is\na\ttest" (1]
>>> print s

this is

a test

>>> print s.split() (2]
[this', 'is', 'a', 'test]

>>> print " " join(s.split() (3]
'this is a test'

(1]

Dive Into Python 42

This is a multiline string, defined by escape characters instead of triple quotes. \n is a carriage return, and \t is
a tab character.

(2 split without any arguments splits on whitespace. So three spaces, a carriage return, and a tab character are
all the same.

® You can normalize whitespace by splitting a string with split and then rejoining it with join, using a single
space as a delimiter. This is what the info function does to collapse multi-line doc strings into a single
line.

So what is the info function actually doing with these lambda functions, splits, and and-or tricks?

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

processFunc is now a function, but which function it is depends on the value of the collapse variable. If
collapse is true, processFunc(string) will collapse whitespace; otherwise, processFunc(string)
will return its argument unchanged.

To do this in a less robust language, like Visual Basic, you would probably create a function that took a string and a
collapse argument and used an if statement to decide whether to collapse the whitespace or not, then returned the
appropriate value. This would be inefficie